Pembahasan soal Fungsi Invers

PEMBAHASAN SOAL FUNGSI INVERS

Berikut ini adalah pembahasan soal-soal matematika tentang fungsi invers. Pembahasan soal ini bisa dijadikan bahan belajar mandiri dalam menghadapi ulangan harian, UTS, UAS, UKK, Ujian sekolah, Ujian Nasional dan ujian lainnya. Langsung saja dibawah ini adalah pembahasan soal tentang fungsi invers.

Nomor 1
Jika f(x) = 2x - 6 maka f-1(x) = ...
A. 1/2 x - 3
B. 1/2 x + 3
C. -1/2x - 3
D. -1/2x + 3
E. x - 12

Pembahasan
Untuk menentukan fungsi invers, kita tinggal menentukan persamaan x-nya.
f(x) = 2x - 6
2x = f(x) + 6
x = f(x) + 6 / 2 (ganti x dengan f-1(x) dan f(x) diganti dengan x)
f-1(x) = (x + 6) / 2 = 1/2 x + 3
Jawaban: B

Nomor 2
Jika f(x) = 5 - 1/3x maka f-1(x) = ...
A. 3x + 15
B. 3x - 15
C. -3x + 15
D. -3x - 15
E. -3x + 5/3

Pembahasan
f(x) = 5 - 1/3x
1/3x = 5 - f(x)
x = (5 - f(x)) . 3
x = 15 - 3 f(x)
f-1(x) = -3x + 15
Jawaban: C

Nomor 3
Jika f(x) = (x + 3) / (x - 2) maka f-1(x) = ...
A. (2x + 3) / (x - 1)
B. (x - 3) / (x + 2)
C. (2x + 3) / (x + 1)
D. (-2x + 3) / (x + 1)
E. (-x + 3) / (x - 2)

Pembahasan
Cara 1
Misalkan f(x) = y
y = (x + 3) / (x - 2)
y (x - 2) = x + 3
yx - 2y = x + 3
yx - x = 2y + 3
x (y - 1) = 2y + 3
x = (2y + 3) / (y - 1) ganti x dengan f-1(x) dan y dengan x maka
f-1(x) = (2x + 3) / (x - 1)

Cara 2 
Jika f(x) = (ax + b) / (cx + d) maka f-1(x) = (-dx + b) / (cx - a))
Jadi tinggal tukar tempat dan ganti tanda 1 dengan -2.
f-1(x) = (2x + 3) / (x - 1)
Jawaban: A

Nomor 4
Jika f(x) = 2x / (x - 1) maka f-1(1) = ...
A. -1
B. 0
C. 1
D. 2
E. 3

Pembahasan
Tentukan terlebih dahulu f-1(x)
y = 2x / (x - 1)
y (x - 1) = 2x
yx - y = 2x
yx - 2x = y
x (y - 2) = y
x = y / (y - 2)
f-1(x)  = x / (x - 2)
f-1(1)  = 1 / (1 - 2) = - 1
Jawaban: A

Nomor 5 (UN 2014)
Fungsi invers didefinisikan sebagai f(x) = (x - 3) / (2x + 5), x ≠ - 5/2 dan f-1(x) adalah invers dari fungsi f(x). Rumus dari f-1(x) adalah...
A. (5x + 3) / (1 - 2x)
B. (5x - 3) / (1 - 2x)
C. (5x + 3) / (2x + 1)
D. (2x + 3) / (5x + 5)
E. (2x - 3) / (5x + 5)

Pembahasan
f(x) = (x - 3) / (2x + 5) berarti a = 1, b = -3, c = 2 dan d = 5 maka:
f-1(x) = (-dx + b) / (cx - a))
f-1(x) = (-5x - 3) / (2x -1) atau pembilang dan penyebut dikali - (min)
f-1(x) = (5x + 3) / (-2x + 1)
f-1(x) = (5x + 3) / (1 - 2x)
Jawaban: A

Nomor 6 (UN 2014)
Diketahui f(x) = (5x - 5) / (x - 5), invers fungsi f(x) adalah f-1(x) = ...
A. (x - 5) / (5x - 5)
B. (x + 5) / (5x - 5)
C. (5x - 1) / (5x - 5)
D. (5x - 5) / (x - 5)
E. (5x - 5) / (x + 5)

Pembahasan
f(x) = (5x - 5) / (x - 5) berarti a = 5, b = -5, c = 1 dan d = -5 maka
f-1(x) = (-dx + b) / (cx - a)
f-1(x) = (5x - 5) / (x - 5)
Jawaban: D

Nomor 7
Jika f(x) = x3 - 8 maka f-1(x) = ...
A. 3√(x - 8)
B. 3√(x + 8)
C. 3√x + 8
D. 8 - 3√x
E. 3√x - 8

Pembahasan
f(x) = x3 - 8
x= f(x) + 8
x = 3√(f(x) + 8) ganti x dengan f-1(x) dan f(x) dengan x
f-1(x) = 3√(x + 8)
Jawaban: B

Nomor 8
Jika f(x) = 3log (x - 2) maka f-1(x) = ...
A. 3+ 2
B. 3- 2
C. 2 . 3
D. 3x + 2
E. 3x - 2

Pembahasan
y = 3log (x - 2)
x - 2 = 3y 
x = 3y + 2 ( ganti x dengan f-1(x) dan y dengan x)
f-1(x) = 3x + 2
Jawaban: A

Nomor 9
Jika f(x) = 2 + 3log x, maka f-1(x) = ...
A. 3+ 2
B. 3- 2
C. 2 . 3
D. 3x + 2
E. 3x - 2

Pembahasan
y = 2 + 3log x
3log x = y - 2
x = 3y - 2 
f-1(x) = 3x - 2 
Jawaban: B

Nomor 10
Jika f(x) = 32x - 1 maka f-1(x) = ...
A. 1/2 3log x - 1/2
B. 1/2 3log x + 1/2
C. 1/2 3log x - 1
D. 1/2 3log x + 1
E. 2 3log x - 1

Pembahasan
y = 32x - 1 
log y = log 32x - 1 
log y = 2x - 1 log 3
2x - 1 = log y / log 3
2x - 1 = 3log y
2x = 3log y + 1
x = 1/2 3log y + 1/2
f-1(x) = 1/2 3log x + 1/2 
Jawaban: B
Pembahasan soal Fungsi Invers Pembahasan soal Fungsi Invers Reviewed by Johan Akhmadin on Sunday, August 30, 2015 Rating: 5
Powered by Blogger.